
Chirality and Vorticity in 
Non-trivial Geometry at 

Finite Temperature

Kenji Fukushima 
 

The University of Tokyo 

1

— QCD in Finite Temperature and Heavy-Ion Collisions —

In Collaboration with Nino Flachi (Keio) 
appearing in arXiv very soon (this week?)



Feb. 14, 2017 @ BNL

Vorticity

2

Fluid

r⇥ u

Rotating QFT

Coordinate Transformation  
Finite Size (causality)



Feb. 14, 2017 @ BNL

Calculations in Cylindrical Coordinates

3

Ebihara-KF-Mameda, 1608.00336

be then a delicate quantitative competition which of |⌦ j| and
R�1| j| can be larger. Our explicit calculations (at zero temper-
ature) will show that the energy gap ⇠ R�1| j| is always larger
than the e↵ective chemical potential |⌦ j|, and so no mode is
actually Pauli blocked. This means that the chiral condensate
cannnot be modified at all so long as the temperature is smaller
than the e↵ective chemical potential.

Our results imply that the phase transition scenario needs
judicious refinements in the low-temperature region. At finite
temperature the situation could be qualitatively changed, be-
cause there is no strict Pauli blocking, and moreover the anoma-
lous e↵ects are turned on. In the end we will briefly mention on
non-trivial interplay between the rotation and the finite temper-
ature and magnetic field.

2. Reviewing the Dirac equation in a rotating frame

We explain our notation by making a quick summary of ba-
sic formulas for Dirac fermions in a rotating frame. The free
Dirac equation in curved spacetime reads [33],

⇥

i�µ(@µ + �µ) � m
⇤

 = 0 , (1)

where the covariant derivatives associated with finite rotation
are specified as �µ = � i

4!µi j�i j with the Dirac spin matri-
ces �i j = i

2 [�i, � j]. The spin connection is given by !µi j =

g↵�e↵i (@µe
�
j + �

�
µ⌫e⌫j) in terms of the metric and the vierbine,

where Greek and Latin letters represent coordinate (µ = t, x, y, z)
and tangent (i = 0, 1, 2, 3) space, respectively. In a rotating
frame with the angular frequency vector,⌦ = ⌦ ẑ, we can write
the explicit form of the metric down as
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The corresponding vierbine is not unique and for convenience
we shall choose them as

et
0 = ex
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2 = ez
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0 = �x⌦ , (3)

and zero for other components. We can simplify the Dirac ma-
trix structure of Eq. (1) converting �µ to �i, and then the Dirac
equation in these rotating (t, x, y, z) coordinates with �i takes the
following form,
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The solutions of the above Dirac equation provide us with a
complete set of bases. The positive-energy particle solutions
with positive and negative helicity take the following explicit
form in the Dirac representation of �i’s;
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where " ⌘ |E + ⌦ j|. Here j represents the z-component of the
total angular momentum and we introduce ` = `+ = `� � 1 with
the azimuthal quantum number `± for spin “up” and “down”
states, so that j = ` + 1/2 holds for any spin states. Also,
we defined scalar functions of the radial momentum as �` =
ei`✓J`(p`, kr) and �`+1 = ei(`+1)✓J`+1(p`, kr), which lead to the
dispersion relation "2 = p2

`, k + p2
z + m2. In the same way the

negative-energy antiparticle solutions with positive and nega-
tive helicity are obtained from v± = i�2u⇤± as
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As we discuss later, we will compute the vacuum expectation
value of field operators using these basis functions.

3. Momentum discretization

In a finite box the momenta should be discrete reflecting the
(sharp) boundary condition imposed on the edge of the box. We
are considering a cylinder that has a boundary at r =

p

x2 + y2 =
R and is infinitely long along the z-axis. Thus, pz is not modi-
fied, while the radial momenta should take discrete values gapped
by / R�1, which was the reason why we denoted them as p`, k.
Since this discretization property is such crucial for our quan-
titative comparisons, let us carefully see how the discretization
condition is physically required.

To this end, we see how the current conservation follows in
a finite-size cylindrical system [34]. For the fermion in curved
spacetime the vector current conservation law reads,

rµ jµ =
1
p

|g|
@µ(
p

|g| jµ) = 0 , (7)

where rµ represents the covariant derivative and jµ =  ̄�µ .
Thus, to keep the total charge constant in a cylinder, we must
impose a condition of no incoming flux at the spatial boundary
as
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Here ↵ stands for the spatial components x, y, z in coordinate
space. In cylindrical coordinates the above condition turns into
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We note that �r ⌘ �1 cos ✓ + �2 sin ✓ that follows from �1@1 +
�2@2 = �r@r + r�1�✓@✓. For arbitrary fermionic fields we can
expand  (x) using the complete set of u±(x) and v±(x), and then
after the ✓-integration which constrains possible combinations
of `, we find a superposition of four linear independent quanti-
ties;

J`(p`�1,kR)J`(p`,k0R) , J`(p`,kR)J`(p`�1,k0R) ,
J`(p`�1,kR)J`(p�`�1,k0R) , J`(p`,kR)J`(p�`,k0R) .
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Solve this in a finite cylinder (radius R)

Not only the affine connection but gamma’s changed

Chen-KF-Huang-Mameda (2015)
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B ⇠ µ!
Chiral Magnetic Effect (CME)  ~  Chiral Vortical Effect (CVE)

Gauge effect Geometrical effect

Homogeneous Inhomogeneous  
      (in a rotating frame)

No upper limit Causality limit

Gauge theory General relativity 
Fluid dynamics
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Rotating fermions are given  
finite momenta, and the Dirac 
sea is “pushed up” just like 
chemical potentials.

Most well-known example: 
Deformed Nuclei

Cranking model H
rot

= H � !Jz
Looks like a chemical potential for matter

cf. Fermions with rotation have the sign problem on the lattice!

!Jz
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To realize the fluxless condition for arbitrary  (x) we have to
make all of them vanishing and this is possible when the trans-
verse momenta are discretized as [34, 35]

p`, k =

8

>

>

<

>

>

:

⇠`, k R�1 for ` = 0, 1, . . .
⇠�`�1, k R�1 for ` = �1,�2, . . .

(10)

where ⇠`, k represents the k-th zero of J`(x).
The most fundamental quantity to calculate physical ob-

servables is Green’s function or the propagator. The propaga-
tor for rotating systems is modified by the boundary e↵ects at
r = R as well as the non-trivial metric tensor involving ⌦. We
can readily construct the free propagator from u±(x) and v±(x)
as

S i j
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We should note that the weight in the `- and k-sum are deter-
mined from the Bessel-Fourier expansion and the following or-
thogonal relation,

Z R
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2
�kk0 [J`+1(p`,kR)]2 , (12)

and we can numerically verify that the following approximation
works at excellent precision for not too large ` (for example, for
` ⇠ 100 and k ⇠ 10, the deviation is ⇠ 1% and the agreement is
better for smaller `);

2
[J`+1(p`,kR)]2R2 ⇡ p`,k �p`,k , (13)

where �p`, k ⌘ p`, k+1�p`, k. This approximated form is useful to
think of the continuum limit with R ! 1. We can parametrize
the matrix elements in the propagator using �`,`0 ⌘ �` �0⇤`0 as
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4. Rotating and yet unchanged condensate

Let us take an explicit example to calculate the field ex-
pectation value in a rotating frame. An e↵ective model with
four-fermion interaction is an ideal setup for this purpose to
investigate the fate of the chiral condensate. The e↵ective Lan-
grangian is

L4-fermi =  ̄
⇥

i�µ(@µ + �µ)�m
⇤

 +
G
2
⇥

( ̄ )2 + ( ̄i�5 )2⇤ . (17)

The e↵ective action at the one-loop order in the mean-field ap-
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From the condition, ��e↵[m]/�m(r) = 0, we can write down the
gap equation as

m(r) = G tr S (x, x) . (19)

Here S i j(x, y) represents the free fermion propagator with mass
m(r). It is technically di�cult to solve this functional gap equa-
tion self-consistently [36], and in the present work we will work
in the local density approximation [32]. That is, we solve m(r)
at each r as if m(r) were an r-independent variable. We can jus-
tify such an approximate treatment for @rm ⌧ m2. Now under
this approximation, we can perform the one-loop integration of
the gap equation as
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We can explicitly take tr[S`(p, r, ✓)] to simplify the right-hand
side. We note that S`(p, r, ✓) generally has ✓-dependence, but
its trace does not depend on ✓ any more as seen from
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Then, after the p0-integration, the gap equation in the local den-
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In the same way as the finite-density system, the e↵ect of the
rotation appears only in the form of the theta function constraint
which represents an e↵ective chemical potential of |⌦ j| = |⌦(`+
1/2)| induced by rotation. Therefore, the modification caused
by rotation comes out from the contribution with " < |⌦ j|.

If we make an approximation of R ⇠ 1 and treat the prob-
lem with a continuous transverse momentum instead of p`, k,
the rotation and the finite chemical potential appear identical in
the gap equation. In a rotating frame, however, the causality
constraint, ⌦R  1, prevents us from taking arbitrarily large
R. Once the boundary at r = R is properly taken into account,
there is no such mode that satisfies " < |⌦ j|, as we see below.
It is easy to understand this from the discretization condition; "
becomes minimized at pz = m = 0 and k = 1, so that we can
see, for ` � 0,

" �⌦|` + 1/2| � 1
R

h

⇠`, 1 �⌦R(` + 1/2)
i

� 1
R

h

⇠`, 1 � (` + 1/2)
i

> 0 , (23)

3

To realize the fluxless condition for arbitrary  (x) we have to
make all of them vanishing and this is possible when the trans-
verse momenta are discretized as [34, 35]

p`, k =

8

>

>

<

>

>

:

⇠`, k R�1 for ` = 0, 1, . . .
⇠�`�1, k R�1 for ` = �1,�2, . . .

(10)

where ⇠`, k represents the k-th zero of J`(x).
The most fundamental quantity to calculate physical ob-

servables is Green’s function or the propagator. The propaga-
tor for rotating systems is modified by the boundary e↵ects at
r = R as well as the non-trivial metric tensor involving ⌦. We
can readily construct the free propagator from u±(x) and v±(x)
as

S i j
F (x, x0) = i

Z

dp0 dpz

(2⇡)2
1

2⇡

1
X

`=�1

1
X

k=1

2
[J`+1(p`,kR)]2R2

⇥ e�ip0(t�t0)+ipz(z�z0)

(p0 +⌦ j)2 � "2 + i✏
Si j
` (p; r, ✓) .

(11)

We should note that the weight in the `- and k-sum are deter-
mined from the Bessel-Fourier expansion and the following or-
thogonal relation,

Z R

0
dr r J`(p`,kr)J`(p`,k0r) =

R2

2
�kk0 [J`+1(p`,kR)]2 , (12)

and we can numerically verify that the following approximation
works at excellent precision for not too large ` (for example, for
` ⇠ 100 and k ⇠ 10, the deviation is ⇠ 1% and the agreement is
better for smaller `);

2
[J`+1(p`,kR)]2R2 ⇡ p`,k �p`,k , (13)

where �p`, k ⌘ p`, k+1�p`, k. This approximated form is useful to
think of the continuum limit with R ! 1. We can parametrize
the matrix elements in the propagator using �`,`0 ⌘ �` �0⇤`0 as

S`(p0, p`, k, pz; r, ✓) =
 

M+ N+
N� M�

!

, (14)

where

M± ⌘
 

(±p0 + m)�`,` 0
0 (±p0 + m)�`+1, `+1

!

(15)

N± ⌘
 

�pz�`,` ±ip`,k�`,`+1
⌥ip`,k�`+1,` pz�`+1,`+1

!

. (16)

4. Rotating and yet unchanged condensate

Let us take an explicit example to calculate the field ex-
pectation value in a rotating frame. An e↵ective model with
four-fermion interaction is an ideal setup for this purpose to
investigate the fate of the chiral condensate. The e↵ective Lan-
grangian is

L4-fermi =  ̄
⇥

i�µ(@µ + �µ)�m
⇤

 +
G
2
⇥

( ̄ )2 + ( ̄i�5 )2⇤ . (17)

The e↵ective action at the one-loop order in the mean-field ap-
proximation reads,

�e↵[m(r)] =
Z

d4x
m(r)2

2G
� Tr ln

⇥

@µ + �µ � m(r)
⇤

. (18)

From the condition, ��e↵[m]/�m(r) = 0, we can write down the
gap equation as

m(r) = G tr S (x, x) . (19)

Here S i j(x, y) represents the free fermion propagator with mass
m(r). It is technically di�cult to solve this functional gap equa-
tion self-consistently [36], and in the present work we will work
in the local density approximation [32]. That is, we solve m(r)
at each r as if m(r) were an r-independent variable. We can jus-
tify such an approximate treatment for @rm ⌧ m2. Now under
this approximation, we can perform the one-loop integration of
the gap equation as

m(r)
G
=

i
(2⇡)2

Z 1

�1
dpz

1
X

`=�1

1
X

k=1

2
[J`+1(p`,kR)]2R2

⇥
Z i1+⌦ j

�i1+⌦ j

dp0

2⇡
tr[S`(p; r, ✓)]

p2
0 � "2

.

(20)

We can explicitly take tr[S`(p, r, ✓)] to simplify the right-hand
side. We note that S`(p, r, ✓) generally has ✓-dependence, but
its trace does not depend on ✓ any more as seen from

tr[S`(p, r, ✓)] = 2m
⇥

J`(p`, kr)2 + J`+1(p`, kr)2⇤ . (21)

Then, after the p0-integration, the gap equation in the local den-
sity approximation leads to

m
G
=

m
(2⇡)2

Z 1

�1
dpz

1
X

`=�1

1
X

k=1

2
[J`+1(p`,kR)]2R2

⇥ J`(p`, kr)2 + J`+1(p`, kr)2

"
✓
�

" � |⌦ j|� .
(22)

In the same way as the finite-density system, the e↵ect of the
rotation appears only in the form of the theta function constraint
which represents an e↵ective chemical potential of |⌦ j| = |⌦(`+
1/2)| induced by rotation. Therefore, the modification caused
by rotation comes out from the contribution with " < |⌦ j|.

If we make an approximation of R ⇠ 1 and treat the prob-
lem with a continuous transverse momentum instead of p`, k,
the rotation and the finite chemical potential appear identical in
the gap equation. In a rotating frame, however, the causality
constraint, ⌦R  1, prevents us from taking arbitrarily large
R. Once the boundary at r = R is properly taken into account,
there is no such mode that satisfies " < |⌦ j|, as we see below.
It is easy to understand this from the discretization condition; "
becomes minimized at pz = m = 0 and k = 1, so that we can
see, for ` � 0,

" �⌦|` + 1/2| � 1
R

h

⇠`, 1 �⌦R(` + 1/2)
i

� 1
R

h

⇠`, 1 � (` + 1/2)
i

> 0 , (23)

3

⌦R  1
Causality

As long as “mass” is greater than “chemical potential” 
the vacuum remains as it is (no excitation allowed)

effective chem. pot. smallest “mass” ~ Matsubara mode

µ B T
Gauge CVE Chiral Pumping Effect Gravity CVE

Anomalous effects from coupling with…
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the highest angular momentum modes in F⌦ contributes
nonvanishingly. In contrast, the step function in F

µ

given
in Eq. (25) indicates that all N modes simultaneously
start contributing for µ > m, while for µ < m nothing
happens.

(II) Another way to investigate the di↵erence between
the red and the blue lines in Fig. 2 is to approximate the
`-sum. Suppose that ⌦ is small so that we can treat ⌦j
as a continuous variable. Also we assume a su�ciently
large integer N . Then, we can approximate the `-sum in
F⌦ by an integration as

N�n

X

`=�n

ln

 

⌦|j|+p(⌦j)2 �m2
n

m
n

!

✓(⌦|j|�m
n

)

' 1

⌦

Z

µN

0
dµ ln

 

µ+
p

µ2 �m2
n

m
n

!

✓(µ�m
n

) .

(32)

For our parameter choiceN ⇠ O(104) is large enough and
the above approximation is justified. Then the rotational
contribution to the gap equation (21) is reduced to

F⌦ = F
µ

(µ = µ
N

)� eB

2⇡

1
X

n=0

↵
n

s

1� m2
n

µ2
N

✓(µ
N

�m
n

) .

(33)
It is obvious that a density-like e↵ect induced by rotation
is certainly contained in the first term F

µ

. The second is
a negative term that makes a di↵erence from the finite-
density case. This extra term plays a role to weaken
chiral restoration by rotation as compared to that by
high density. Therefore, the suppression of the dynam-
ical mass in the rotating frame occurs more gradually
than that with the finite chemical potential. Moreover,
Eq. (33) implies F⌦ < F

µ

for a fixed µ
N

, and thus, chiral
restoration by rotation would need larger µ

N

than that
by finite density (see Fig. 1).

(III) For mcurrent = T = 0 and large eB we can an-
alytically investigate the eB-dependence of ⌦

c

. In our
analysis we adopted the näıve cuto↵ regularization with
Eq. (20), but the regularization scheme should be irrel-
evant for a large system with S � 1/eB. If we utilized
the proper time regularization for F0, the gap equation
with rotation and strong magnetic field would be [54]

4⇡2

G
= ⇤2

PT �m2



ln

✓

⇤2
PT

2eB

◆

� �E

�

+ eB

"

ln

✓

m2

4⇡eB

◆

+ 2 ln�

✓

m2

2eB

◆

� 2 ln

✓

µ
N

+
p

µ2
N

�m2

m

◆

+ 2

s

1� m2

µ2
N

#

,

(34)

where �E is the Euler-Mascheroni constant, �(z) denotes
the gamma function, and ⇤PT stands for the cuto↵ pa-
rameter in the proper-time regularization. In this gap
equation (34), the terms in the third line result from the

FIG. 4. 3D plot for the dynamical mass as a function of ⌦
and eB at strong coupling. For large ⌦, chiral symmetry is
restored by eB, which manifests the inverse magnetic catalysis
or the rotational magnetic inhibition.

n = 0 mode in Eq. (33). We can find ⌦
c

from the above
gap equation with m ! 0 substituted, and the analytical
result is

⌦
c

(eB) =

p
⇡

S
p
eB

exp



�2⇡2

eB

✓

1

G
� 1

G
c

◆

+ 1

�

' 1.53⇥ 10�6

p
eB

exp

✓

�0.610⇤2

eB

◆

,

(35)

where G
c

= 4⇡/⇤2
PT is the critical coupling for ⌦ =p

eB = 0 that is found in the proper-time regularization.
In the second line in Eq. (35), we utilized the parameters
of Eqs. (26), (29) and (28). On the other hand, we can
numerically evaluate ⌦

c

as a function of eB as displayed
in Fig. 3. From the linearity in Fig. 3 the numerical fit
leads to

⌦
c

(eB) ' 1.58⇥ 10�6

p
eB

exp

✓

�0.609⇤2

eB

◆

. (36)

This fitting result ensures that Eq. (32) is a good approx-
imation for the parameters in Eq. (28).

B. Dynamical mass at strong coupling (G > Gc)

We shall next focus on the following strong region:

G = 1.11G
c

. (37)

We note that dynamically determined m with the above
strong-coupling is about 20 times larger than mdyn at
weak coupling. We show the numerical results in Fig. 4.
Below are several remarks on the results.

(I) For small angular velocity, the dynamical mass is
almost independent of ⌦ and eB. With increasing ⌦ the

Coupling to B
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Chen-KF-Huang-Mameda (2015) 
Chen-KF-Huang-Mameda in progress

Inverse Magnetic Catalysis 
~ Finite Density System

n = �@⌦

@µ

����
µ=0

=
eB!

4⇡2

interpreted as anomaly (Hattori-Yin 2016)

Can be given another interpretation as Chiral Pumping Effect
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Starting with a Lagrangian with constant B

Axial Vector Field

B+Axial Vector Potential = Chiral Pumping Effect

Second, we shall turn to magnetized rotating matter as dis-
cussed in Ref. [28]. under a strong magnetic field, the Landau
wave-function is localized and can be even more squeezed than
the system size if

p
eB � R�1. Then, the boundary e↵ects are

essentially irrelevant. Also, the energy dispersion relation of
fermions with B is Landau-quantized and the dynamics of the
magnetized fermions is dominated by the Landau zero mode,
which is independent of the angluar momentum. This is quite
di↵erent from rotating fermions without B for which the IR
modes are gapped as seen in Eq. (23). Therefore, there always
exist low-energy modes that are Pauli blocked, and thus, with
help of finite B, the rotation comes to a↵ect the system even at
zero temperature. This is an hand-waving explanation for the
reason why it has been observed in Ref. [28] that the rotation
a↵ects the chiral condensate.

Interestingly, in this case too, the quantum anomaly plays
a crucial role. Unlike the temperature for which the gravita-
tional mixed anomaly was relevant, the well-known standard
chiral anomaly in terms of the gauge field is su�cient to un-
derstand how the rotation and the magnetic field can induce
a finite density. To see this explicitly, let us consider a Dirac
fermion in the magnetic field B = B ẑ without rotation. The
Lagrangian density is simply L =  ̄i�i(@i + ieAi) , where Ai =
(0, By/2,�Bx/2, 0) in the symmetric gauge choice. Now, we
shall perform the “Floquet transformation” [13] or go to the ro-
tating frame by changing,

 ! exp(�1�2⌦t/2) , (28)

together with the coordinate transformation by x! (cos⌦t)x�
(sin⌦t)y and y ! (cos⌦t)y + (sin⌦t)y. Then, the Lagrangian
density after the transformations reads,

L =  ̄[i�0@t + i�1(@x + ieBy/2) + i�2(@y � ieBx/2)

+ i�3@z + (⌦/2)�3�5] .
(29)

Here, we can regard the last term proportional to ⌦/2 as an
axial gauge field or the chiral shift [39], and as calculated in
Ref. [12], a finite density is induced from the quantum anomaly
coupled with the chiral shift term and the magnetic field as

nanomaly =
eB⌦
4⇡2 , (30)

which explains the expression for the density obtained in Ref. [31].
In the above discussions one might have realized that Eq. (29)

is not really the Lagrangian density with B in a rotating frame,
in which more terms like ⌦(�x@y + y@x) should appear. These
terms do not enter Eq. (29) because the Floquet transformation
Eq. (28) does not accompany the rotation of the orbital part. In
fact we canshow that the above anomalous density picks up a
contribution from the spin part only.

Because we already know the complete expression for the
thermodynamics potential or the free energy with both B and
⌦ in Ref. [28], it is easy to take its chemical potential deriva-
tive and compute the density. The free energy under strong B

enough to discard the boundary e↵ects reads,

F = � 1
⇡R2

X

q=±

Z 1

�1

dpz

2⇡

1
X

n=0

↵n

⇥
N�n
X

`=�n

⇢" + q⌦ j + qµ
2

+ T ln
⇥

1 + e�("+q⌦ j+qµ)/T ⇤
�

,

(31)

where ↵n = 2 � �n,0, j = ` + 1/2, N = eBR2/2, and " =
q

p2
z + 2neB. By di↵erentiating it with respect to µ and taking

the T ! 0 limit, the number density turns out to be

nanomaly =
⌦

⇡2R2

N
X

`=0

(` + 1/2) =
eB⌦
4⇡2 (N + 1) . (32)

We see that, in addition to the anomaly-induced density in Eq. (30),
we have an extra contribution from the orbital angular momen-
tum `, which makes a contrast to the result in Ref. [31]. What
we can learn from the above exercise is that the rotation can
a↵ect the thermodynamic properties and thus modify the con-
densate if a strong magnetic field is imposed.

We already mentioned that the intermediate region is dif-
ficult to investigate. For the temperature e↵ect, what happens
for T . R�1 still needs careful considerations, and in the same
way for the magnetic e↵ect, it would be a quantitatively sub-
tle question to study the regime for

p
eB . R�1. In most of

physics problems involving quarks and gluons, either T � R�1

(in a quark-gluon plasma) or
p

eB � R�1 (in a neutron star)
would be realized, but for future applications to table-top ex-
periments, a more complete treatment over the whole regime
would become important.
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 ! exp(�1�2!t/2) 
x ! x cos(!t)� y sin(!t)

y ! y cos(!t) + x sin(!t)

L =  ̄[i�0@0 + i�

1(@1 + ieBy/2) + i�

2(@2 � ieBx/2)

+i�

3
@3 + (!/2)�3�5] 

Similar to Quarkyonic Chiral Spirals

(Ebihara-KF-Oka 2015)
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Vilenkin (1980)

2266 ALEXANDER VILENKIN 21

( J(0) ) = f Q(2~) ' d(o [f„((u) f,(—ro)1-
C

r
d'P(~'+P')(~' P') -' (80)

where

Using a standard device" the sum in Eq. (79) can
be transformed into an integral

consider an equilibrium system divided into
several weakly interacting subsystems. The in-
teraction between subsystems is important in
establishing thermal equilibrium but can be ne-
glected- otherwise. In this case, the subsystems
are statistically independent and thus the statis-
tical operator for two subsystems is equal to the
product of statistical operators for the individual
subsystem~ ~12 ~1~2

f.(~) =(e"+1) '
and the contour C runs around the imaginary axis
in the counterclockwise direction. The integral
over ~ is easily evaluated and we get

( J(0) ) =Q(2v) ' J"d 'pf,'(p)

1&» =lnp, +lop
From the equation for the statistical operator

sp/st =i[H, p],
it fol1.ows that in equilibrium

[H, p] =o.

(Al)

(A2)

(A3)
=—Qv ' y, (P)P dP = ,', Q T'—.—

0
(82)

This is in agreement with Ref. 3 where the neu-
trino current has been calculated using different
methods.
Using Eq. (77) one can calculate contributions

to ( J(0)) proportional to the higher powers of Q.
It is shown in Appendix D that the resulting series
can be summed to give a simple closed expression.
The result is

(J(O) ) = —Q(T'/12+Q2/48''), (83)
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APPENDIX A

In this appendix, I shall derive Eq. (3) for the
statistical operator in a rotating system. Let us

again in agreement with Ref. 3.
A word of caution shouM be said concerning the

interpretation of Eq. (83). As was mentioned
earlier, a rotating system cannot be infinite, its
maximum size in the plane of rotation being
A =0 '. The energy spectrum of particles in a
finite system is different from that in infinite
space. A considerable deviation occurs for the
low-lying energy states with energies & «R '.
From Eq. (82) we see that the contribution of this
part of the spectrum to (J(0)) is of order QR '.
If T»R ', this contribution is much smaller than
the first term in Eq. (83), but it is always greater
than or comparab1e to the second term.
The conclusion is that for T»R ', Eq. (82) gives

a good approximation while for T «R ' the boun-
dary effects are important and Eq. (83) is inac-
curate. In particular, one cannot argue from Eq.
(83) that""(J(0))00 at T =0.

Equations (Al) and (A3) imply that lnp is an ad-
ditive integral of motion. The only additive in-
tegrals of motion for a mechanical system are the
energy H, momentum P, and angular momentum
M. To these we have to add the particle numbers
N, (or the . conserved charges Q, if interactions
with transformations between different particles
are allowed). Therefore, lnp has to be equal to
a linear combination of these quantities:

lnp =n +p H +y ~ M + 5 P + Q A(N(, .

where the constants n, P, y, 5, and A, have the
same values for all subsystems.
The entropy of a subsystem is given by

(A4)

S =-&lnp) =-»(plnp)
and thus

(A5)

dS =—PdE —y dM —5 dP -QX,dN, , .

where E =(H) and M, P, and N, stand for the
statistical averages of the corresponding opera-
tors. Comparing this equation with

(A6)

dE=TdS +V' dP+Q' dM+ Q p. ;dN;, (A7)

APPENDIX B

In this appendix we shall calculate
Po

A = ~ dPP $„~„(x,)$~~„(x,).S

where 7 is the center-of-mass velocity, 0 is the
angular velocity, and p, are the chemical po-
tentials, we find

P =—T, y =Q/T, 6 =V/T, A., =p,./T . (A8)

In the rest frame of the system V =0 and we come
to Eq. (3). The normalization constant C is de-
termined from the condition Trp =1.

T � R�1 Boundary can be neglected (Debye screening)

QUANTUM FIELD THEOR Y AT FINITE TEMPERATURE IN A. . . 2263

The spinor field operator can be written as
OO

4'(x, t) = dv ~ dP[a„~ „)I)~„„(x)e'"'
m h & -pp

where h stands for helicity, a„h and b„h satisfy
the usual anticommutation relations, g„~ „(x)and

„(x) are the particle and antiparticle wave
functions, respectively,

1 0 0 0

0 cos/ sing 0

0 —sing cosP 0

,0 0 1

The corresponding spinor transformation is
O' =U+

where the transformation matrix a is given by

(47)

(48)

Xtd pmh y + epoch (40)

S'(x„v „.x„v,) =P '+exp(-&, v) S( x„x„f,),
l

The specific form of g„~„~is unimportant for the
following discussion. We shall only use the fact
that the P dependence of t(I„„„is given by the
factor exp(imP).
Following the lines of the previous subsection,

we obtain

where

U(p) =exp( 2igZ, )
and

0 g

For the y matrices,
y' =BUyU =y.

(49)

(50)

(51)

where g =in(2l +1))6 ',
(41) ln cylindrical coordinates, the local coordinate

axes at point {r,g, z) are rotated by angle P with
respect to Cartesian ones, and thus the cylindri-
cal and Cartesian spinor Green's functions are
related by

S (xo„xf,) =U(P, )S()(x„x„g,)U (p,). (52)

&. =g ~t dP 0:...(,) 0 „',„,(,),
tÃs h -po

p
dPX„~ „{x,)x„~„„(x,).

e~ h

Equation (42) can be rewritten in the form

(42)

(43)

S,(x„x„t,) =— d'p e'~'&xi-*2) ' -'
(2v)~ . g)2 -p3 —p, 2

(45)

e 8S'(x„x„l, ) =exp~ —iQ St( xx„l, ),
(44)

where S,' is the free spinor Green's function for a
nonrotating system in cylindrical coordinates,
which can be obtained from the Cartesian Green's
function

and we obtain

S(x„x,, g, ) =exp —iQ (x, && V, ) +—,'Q Z

xS,(x„x„l', ) . (54)

Replacing s/8@, by —9/sp, in Eq. (44), we find
another representation for the spinor Green's
function:

From Eqs. (44) and (52) we find that the spinor
Green function for a rotating system in Cartesian
coordinates is given by

S(x„x2)$,) =U (P, )

xexp —iQ U x, x8 8&
Bfq s ~j

(53)
Using the we11-known theorem that if the com-
mutator of operators A and B commutes with both
A and B, then

eAeB —eBeAelA. &&

by means of a coordinate transformation.
If the local coordinate system at some point

is rotated by angle Q around the z axis, then all
the vector quantities at that point transform ac-
cording to

S(x„x„l, ) =exp iQ ~ (x, x &,)

"S,(x„x„t,)exp(H Z (55)

V' =+V, (46} Here the arrow over s/sg, indicates that this dif-

The most important expression in Vilenkin’s paper

Energy Derivative“Energy Shift Operator”
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QUANTUM FIELD THEOR Y AT FINITE TEMPERATURE IN A. . . 2263

The spinor field operator can be written as
OO

4'(x, t) = dv ~ dP[a„~ „)I)~„„(x)e'"'
m h & -pp

where h stands for helicity, a„h and b„h satisfy
the usual anticommutation relations, g„~ „(x)and

„(x) are the particle and antiparticle wave
functions, respectively,

1 0 0 0

0 cos/ sing 0

0 —sing cosP 0

,0 0 1

The corresponding spinor transformation is
O' =U+

where the transformation matrix a is given by

(47)

(48)

Xtd pmh y + epoch (40)

S'(x„v „.x„v,) =P '+exp(-&, v) S( x„x„f,),
l

The specific form of g„~„~is unimportant for the
following discussion. We shall only use the fact
that the P dependence of t(I„„„is given by the
factor exp(imP).
Following the lines of the previous subsection,

we obtain

where

U(p) =exp( 2igZ, )
and

0 g

For the y matrices,
y' =BUyU =y.

(49)

(50)

(51)

where g =in(2l +1))6 ',
(41) ln cylindrical coordinates, the local coordinate

axes at point {r,g, z) are rotated by angle P with
respect to Cartesian ones, and thus the cylindri-
cal and Cartesian spinor Green's functions are
related by

S (xo„xf,) =U(P, )S()(x„x„g,)U (p,). (52)

&. =g ~t dP 0:...(,) 0 „',„,(,),
tÃs h -po

p
dPX„~ „{x,)x„~„„(x,).

e~ h

Equation (42) can be rewritten in the form

(42)

(43)

S,(x„x„t,) =— d'p e'~'&xi-*2) ' -'
(2v)~ . g)2 -p3 —p, 2

(45)

e 8S'(x„x„l, ) =exp~ —iQ St( xx„l, ),
(44)

where S,' is the free spinor Green's function for a
nonrotating system in cylindrical coordinates,
which can be obtained from the Cartesian Green's
function

and we obtain

S(x„x,, g, ) =exp —iQ (x, && V, ) +—,'Q Z

xS,(x„x„l', ) . (54)

Replacing s/8@, by —9/sp, in Eq. (44), we find
another representation for the spinor Green's
function:

From Eqs. (44) and (52) we find that the spinor
Green function for a rotating system in Cartesian
coordinates is given by

S(x„x2)$,) =U (P, )

xexp —iQ U x, x8 8&
Bfq s ~j

(53)
Using the we11-known theorem that if the com-
mutator of operators A and B commutes with both
A and B, then

eAeB —eBeAelA. &&

by means of a coordinate transformation.
If the local coordinate system at some point

is rotated by angle Q around the z axis, then all
the vector quantities at that point transform ac-
cording to

S(x„x„l, ) =exp iQ ~ (x, x &,)

"S,(x„x„t,)exp(H Z (55)

V' =+V, (46} Here the arrow over s/sg, indicates that this dif-

hjµ5 i ⇠ htr[�µ
�5S(x, x)]i

⇠ ⌦ ·⌃ @

@p0

Z
d4p

(2⇡)4

�⌫p⌫ +m

p2 �m2

⇠ tr[�5�
µ�↵���⌫ ]

Surface term! 
Vanishing at T=0!

“Anomalous” current present at finite T !
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Landsteiner-Megias-Pena-Benitez (2011)

A note on “Classifying the topological currents from chiral anomalies”

This is a note on the classification of the topological currents.

I. NOTATIONS AND FORMULAS

The basic properties of the Riemann curvature tensor defined by
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II. CHIRAL ANOMALIES

The chiral anomaly in four dimensions reads,

r
µ

j

µ

A

= C

F

✏

µ⌫⇢�

F

µ⌫

F

⇢�

+ C

R

✏

µ⌫⇢�

R

↵�

µ⌫

R

⇢�↵�

(4)

From the U(1) gauge sector we can see,
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which implies,
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From the gravitational sector we can see,
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For a uniformly rotating system we have
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If we limit ourselves to the first order terms in ⌦, the non-trivial components are only g
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and this is all. It is easy to write down µ = 0 contributions as
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In the same way we can write down µ = z contribution (that is the most interesting in the sense of the chiral vortical

e↵ect) as
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CVE Jµ
A ⇠ !µ2 !T 2

CME can be understood from the Chern-Simons current:

Jµ
A � 4CF ✏

µ⌫⇢�A⌫@⇢A� is a conserved current
Chern-Simons current is zero for physical states
A0 $ µ CS current can be finite (CME current ~ µB)

How to derive the CVE from the gravitational CS current?
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Jµ
A = 4CR✏
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You may think that this is NOT “gauge” invariant  
because the Christoffel symbols are NOT tensors

BUT!
What is vorticity at all?
! + coordinate rotation ! ! + �!

This is impossible for vectors or tensors (zero is always zero)

!z = 2!
xy

= �x

0y = ��y

0x

Jµ
A ⇠ !RCS current ~ T 2 where???

cf. Coriolis force
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Flachi-KF (appearing this week)

A note on the axial current calculation with geometrical e↵ects

This is a note on the axial current calculation. There may be some convention errors about the

imaginary unit.

I. ASSUMPTION

We assume that the propagator in Riemann normal coordinates (that is, Christo↵el symbols are locally vanishing
at x) denoted by S0(x, x0) transforms under a rotation like
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is the rotation generator. This expression is correct for flat space-time and then ⌦ij = ✏

ijk⌦
k

. But I am not fully sure
if this is still correct for general cases. I think, maybe one can prove that the above is correct using some properties
of Riemann normal coordinates. Anyway, for the moment, let us accept this assumption.

II. PROPAGATOR

What we want to have is the current expectation value, and for this purpose we will eventually consider the limit
of x0 ! x, and so it is appropriate to expand S(x, x0) near x0 ' x. Such expansion is already known and the answer
is found in the textbook by Parker and Toms:
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! 0. Here, p0 in Eq. (1) is just k0 in the above expression. The expanded
G(k) is given as

G(k) =
"
1�

✓
A1(x

0) + iA1↵(x
0)

@

@k

↵

�A1↵�(x
0)

@

2

@k

↵

@k

�

◆
@

@m

2
+A2(x

0)

✓
@

@m

2

◆2
#

1

k

2 �m

2
, (4)

in Minkowskian spacetime, i.e., k2 = k
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III. AXIAL CURRENT

The axial current expectation value is given by

hjµ5 i = h ̄�µ�5 i = �itr[�µ�5S(x, x)] . (8)
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2

Thus, all we need is the explicit form of the propagator
S(x, x0) in curved space at finite T including a rotation.

To construct such a propagator, it would be the most
intuitive to treat the e↵ects from rotation and geomet-
rical structure separately. We first employ the Riemann
normal coordinate ⇠ around a point x (that is identi-
fied as ⇠ = 0) and consider a fermion propagator with
infinitesimal separation, x

0 ⇠ x. By definition of the
Riemann normal coordinate, the Christo↵el symbols at
x are all vanishing and the Dirac matrices are ordinary
ones in flat spacetime, which significantly simplifies the
analyses. We can next introduce a finite ! as a small
perturbation. The propagator in the normal coordinate
that has no rotation simplifies in the limit of x0 ! x as

S0(x, x
0 ! x) =
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4
k
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Here k is a momentum conjugate to ⇠ and G(k) is a known
function involving metric derivatives [19] as
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where A1 represents mass-dimension 2 coe�cient in
terms of Riemann tensors at x, A1↵ mass-dimension 3,
and A1↵� , A2 mass-dimension 4 coe�cients, involving
spin operators. Only a part of them will be necessary
later. Higher-order terms represented by the ellipses are
suppressed for su�ciently high T as we will see later.

In what follows we restrict ourselves to a special situa-
tion with two conditions satisfied, which we demand for
technical simplicity. The first condition is that all met-
ric components are time independent and the temporal
components of the metric are space independent. We re-
quire this to utilize the standard Matsubara formalism
that is valid for equilibrated finite-T systems. One may
in principle relax this condition but then must cope with
a more complicated real-time formalism. We note that
the rotation induces space-dependent g00 at !

2 order,
but our current consideration is limited to the linear !

order. (Not relying on an assumption, one can always
transform the metric to such a ultrastatic form.) The
second condition is that all metric components are z in-
dependent and the z components of the metric are space
independent. We demand this to make the rotation axis
simply be the z axis; otherwise, the spin operators or the
rotation generators would be z dependent.

Thanks to simplicity of the Riemann normal coordi-
nate the calculations are straightforward. Now, in our
setup, the temporal direction is not distorted, and thus
the propagator is a function of t � t

0 and we can de-
fine a conjugate energy to t � t

0 that is nothing but k0

in Eq. (4). By applying the rotation generator, we can
write a rotating propagator with ! as

S(x,x0
, k0) = e

!· 12⌃
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@k0
S0(x,x

0
, k0) , (6)

for x0 ⇠ x (and x is the center of rotation, so that there
is no orbital term), where ⌃ is a spin operator defined by
⌃i = ✏

ijk

i

4 [�j , �k]. Now we recall our assumption of small
! and proceed to the expansion in terms of !. In the
0th order, we can replace S(x,x0

, k0) with S0(x,x0
, k0).

Then, using the symmetry properties of the Riemann ten-
sors, we can readily convince ourselves that jµ

A

��
⌦=0

= 0.
This is a reasonable result; even in curved space the axial
current is vanishing as long as there is no rotation.
In the 1st order the spin operator makes a di↵erence

leading to a non-zero Dirac trace. So, the whole quantity
is proportional to tr[�5�µ
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⌫ ] = 4i✏µµ
0
⌫

0
⌫ , which is

characteristic to anomaly calculations, and some alge-
braic procedures lead us to
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where, as noted in the beginning, we use the angular
velocity tensor that satisfies !i = ✏

ijk

!

jk

. The first term
in Eq. (5) immediately recovers the well-known formula
of the chiral vortical e↵ect. That is, defining the energy

dispersion "
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The above amounts to i�(2)⇣(2)
2⇡2 T

2 = i

12T
2 in the m ! 0

limit, from which we correctly reach Eq. (1).
The most interesting correction to the axial current

appears from the second term in Eq. (5). We use A1 =
R/12 [19] and the momentum integration for this term is
almost the same as the previous one apart from the mass
derivative. Then, we can show,

@

@m

2

Z
d

4
k

(2⇡)4
@

@k0

k0

k

2 �m

2
= � i

2

Z
d

3
k

(2⇡)3
"

�1
k

n

00
F

("
k

) .

(9)
We can take the m ! 0 limit and then the above integral
yields � i

8⇡2 . Therefore, together with the first term, the
total current turns out to be
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This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2

/12 � m

2
/8⇡2) to the first

order. Then, according to the chiral gap e↵ect [20], a

(in the normal coordinates)
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This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2

/12 � m

2
/8⇡2) to the first

order. Then, according to the chiral gap e↵ect [20], a

up to the 1st order in w
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2

Thus, all we need is the explicit form of the propagator
S(x, x0) in curved space at finite T including a rotation.

To construct such a propagator, it would be the most
intuitive to treat the e↵ects from rotation and geomet-
rical structure separately. We first employ the Riemann
normal coordinate ⇠ around a point x (that is identi-
fied as ⇠ = 0) and consider a fermion propagator with
infinitesimal separation, x

0 ⇠ x. By definition of the
Riemann normal coordinate, the Christo↵el symbols at
x are all vanishing and the Dirac matrices are ordinary
ones in flat spacetime, which significantly simplifies the
analyses. We can next introduce a finite ! as a small
perturbation. The propagator in the normal coordinate
that has no rotation simplifies in the limit of x0 ! x as

S0(x, x
0 ! x) =

Z
d

4
k

(2⇡)4
(��

µ

k

µ

+m)G(k) . (4)

Here k is a momentum conjugate to ⇠ and G(k) is a known
function involving metric derivatives [19] as

G(k) =
"
1�
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where A1 represents mass-dimension 2 coe�cient in
terms of Riemann tensors at x, A1↵ mass-dimension 3,
and A1↵� , A2 mass-dimension 4 coe�cients, involving
spin operators. Only a part of them will be necessary
later. Higher-order terms represented by the ellipses are
suppressed for su�ciently high T as we will see later.

In what follows we restrict ourselves to a special situa-
tion with two conditions satisfied, which we demand for
technical simplicity. The first condition is that all met-
ric components are time independent and the temporal
components of the metric are space independent. We re-
quire this to utilize the standard Matsubara formalism
that is valid for equilibrated finite-T systems. One may
in principle relax this condition but then must cope with
a more complicated real-time formalism. We note that
the rotation induces space-dependent g00 at !

2 order,
but our current consideration is limited to the linear !

order. (Not relying on an assumption, one can always
transform the metric to such a ultrastatic form.) The
second condition is that all metric components are z in-
dependent and the z components of the metric are space
independent. We demand this to make the rotation axis
simply be the z axis; otherwise, the spin operators or the
rotation generators would be z dependent.

Thanks to simplicity of the Riemann normal coordi-
nate the calculations are straightforward. Now, in our
setup, the temporal direction is not distorted, and thus
the propagator is a function of t � t

0 and we can de-
fine a conjugate energy to t � t

0 that is nothing but k0

in Eq. (4). By applying the rotation generator, we can
write a rotating propagator with ! as

S(x,x0
, k0) = e

!· 12⌃
@

@k0
S0(x,x

0
, k0) , (6)

for x0 ⇠ x (and x is the center of rotation, so that there
is no orbital term), where ⌃ is a spin operator defined by
⌃i = ✏

ijk

i

4 [�j , �k]. Now we recall our assumption of small
! and proceed to the expansion in terms of !. In the
0th order, we can replace S(x,x0

, k0) with S0(x,x0
, k0).

Then, using the symmetry properties of the Riemann ten-
sors, we can readily convince ourselves that jµ

A

��
⌦=0

= 0.
This is a reasonable result; even in curved space the axial
current is vanishing as long as there is no rotation.
In the 1st order the spin operator makes a di↵erence

leading to a non-zero Dirac trace. So, the whole quantity
is proportional to tr[�5�µ

�

µ

0
�

⌫

0
�

⌫ ] = 4i✏µµ
0
⌫

0
⌫ , which is

characteristic to anomaly calculations, and some alge-
braic procedures lead us to
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where, as noted in the beginning, we use the angular
velocity tensor that satisfies !i = ✏

ijk

!

jk

. The first term
in Eq. (5) immediately recovers the well-known formula
of the chiral vortical e↵ect. That is, defining the energy

dispersion "

k

=
p

k

2 +m

2, we find;
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The above amounts to i�(2)⇣(2)
2⇡2 T

2 = i

12T
2 in the m ! 0

limit, from which we correctly reach Eq. (1).
The most interesting correction to the axial current

appears from the second term in Eq. (5). We use A1 =
R/12 [19] and the momentum integration for this term is
almost the same as the previous one apart from the mass
derivative. Then, we can show,
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We can take the m ! 0 limit and then the above integral
yields � i

8⇡2 . Therefore, together with the first term, the
total current turns out to be

j
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This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2

/12 � m

2
/8⇡2) to the first

order. Then, according to the chiral gap e↵ect [20], a

Leading-order contribution ~

2

Thus, all we need is the explicit form of the propagator
S(x, x0) in curved space at finite T including a rotation.

To construct such a propagator, it would be the most
intuitive to treat the e↵ects from rotation and geomet-
rical structure separately. We first employ the Riemann
normal coordinate ⇠ around a point x (that is identi-
fied as ⇠ = 0) and consider a fermion propagator with
infinitesimal separation, x

0 ⇠ x. By definition of the
Riemann normal coordinate, the Christo↵el symbols at
x are all vanishing and the Dirac matrices are ordinary
ones in flat spacetime, which significantly simplifies the
analyses. We can next introduce a finite ! as a small
perturbation. The propagator in the normal coordinate
that has no rotation simplifies in the limit of x0 ! x as

S0(x, x
0 ! x) =

Z
d

4
k

(2⇡)4
(��

µ

k

µ

+m)G(k) . (4)

Here k is a momentum conjugate to ⇠ and G(k) is a known
function involving metric derivatives [19] as

G(k) =
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1�
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where A1 represents mass-dimension 2 coe�cient in
terms of Riemann tensors at x, A1↵ mass-dimension 3,
and A1↵� , A2 mass-dimension 4 coe�cients, involving
spin operators. Only a part of them will be necessary
later. Higher-order terms represented by the ellipses are
suppressed for su�ciently high T as we will see later.

In what follows we restrict ourselves to a special situa-
tion with two conditions satisfied, which we demand for
technical simplicity. The first condition is that all met-
ric components are time independent and the temporal
components of the metric are space independent. We re-
quire this to utilize the standard Matsubara formalism
that is valid for equilibrated finite-T systems. One may
in principle relax this condition but then must cope with
a more complicated real-time formalism. We note that
the rotation induces space-dependent g00 at !

2 order,
but our current consideration is limited to the linear !

order. (Not relying on an assumption, one can always
transform the metric to such a ultrastatic form.) The
second condition is that all metric components are z in-
dependent and the z components of the metric are space
independent. We demand this to make the rotation axis
simply be the z axis; otherwise, the spin operators or the
rotation generators would be z dependent.

Thanks to simplicity of the Riemann normal coordi-
nate the calculations are straightforward. Now, in our
setup, the temporal direction is not distorted, and thus
the propagator is a function of t � t

0 and we can de-
fine a conjugate energy to t � t

0 that is nothing but k0

in Eq. (4). By applying the rotation generator, we can
write a rotating propagator with ! as

S(x,x0
, k0) = e

!· 12⌃
@

@k0
S0(x,x

0
, k0) , (6)

for x0 ⇠ x (and x is the center of rotation, so that there
is no orbital term), where ⌃ is a spin operator defined by
⌃i = ✏

ijk

i

4 [�j , �k]. Now we recall our assumption of small
! and proceed to the expansion in terms of !. In the
0th order, we can replace S(x,x0

, k0) with S0(x,x0
, k0).

Then, using the symmetry properties of the Riemann ten-
sors, we can readily convince ourselves that jµ

A

��
⌦=0

= 0.
This is a reasonable result; even in curved space the axial
current is vanishing as long as there is no rotation.
In the 1st order the spin operator makes a di↵erence

leading to a non-zero Dirac trace. So, the whole quantity
is proportional to tr[�5�µ

�

µ

0
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⌫

0
�

⌫ ] = 4i✏µµ
0
⌫

0
⌫ , which is

characteristic to anomaly calculations, and some alge-
braic procedures lead us to
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where, as noted in the beginning, we use the angular
velocity tensor that satisfies !i = ✏

ijk

!

jk

. The first term
in Eq. (5) immediately recovers the well-known formula
of the chiral vortical e↵ect. That is, defining the energy

dispersion "

k

=
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k

2 +m

2, we find;
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The above amounts to i�(2)⇣(2)
2⇡2 T

2 = i

12T
2 in the m ! 0

limit, from which we correctly reach Eq. (1).
The most interesting correction to the axial current

appears from the second term in Eq. (5). We use A1 =
R/12 [19] and the momentum integration for this term is
almost the same as the previous one apart from the mass
derivative. Then, we can show,
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We can take the m ! 0 limit and then the above integral
yields � i

8⇡2 . Therefore, together with the first term, the
total current turns out to be

j

z

A

=
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12
� R

96⇡2
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This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2

/12 � m

2
/8⇡2) to the first

order. Then, according to the chiral gap e↵ect [20], a

i

12
T 2
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Thus, all we need is the explicit form of the propagator
S(x, x0) in curved space at finite T including a rotation.

To construct such a propagator, it would be the most
intuitive to treat the e↵ects from rotation and geomet-
rical structure separately. We first employ the Riemann
normal coordinate ⇠ around a point x (that is identi-
fied as ⇠ = 0) and consider a fermion propagator with
infinitesimal separation, x

0 ⇠ x. By definition of the
Riemann normal coordinate, the Christo↵el symbols at
x are all vanishing and the Dirac matrices are ordinary
ones in flat spacetime, which significantly simplifies the
analyses. We can next introduce a finite ! as a small
perturbation. The propagator in the normal coordinate
that has no rotation simplifies in the limit of x0 ! x as

S0(x, x
0 ! x) =

Z
d

4
k

(2⇡)4
(��

µ

k

µ

+m)G(k) . (4)

Here k is a momentum conjugate to ⇠ and G(k) is a known
function involving metric derivatives [19] as

G(k) =
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where A1 represents mass-dimension 2 coe�cient in
terms of Riemann tensors at x, A1↵ mass-dimension 3,
and A1↵� , A2 mass-dimension 4 coe�cients, involving
spin operators. Only a part of them will be necessary
later. Higher-order terms represented by the ellipses are
suppressed for su�ciently high T as we will see later.

In what follows we restrict ourselves to a special situa-
tion with two conditions satisfied, which we demand for
technical simplicity. The first condition is that all met-
ric components are time independent and the temporal
components of the metric are space independent. We re-
quire this to utilize the standard Matsubara formalism
that is valid for equilibrated finite-T systems. One may
in principle relax this condition but then must cope with
a more complicated real-time formalism. We note that
the rotation induces space-dependent g00 at !

2 order,
but our current consideration is limited to the linear !

order. (Not relying on an assumption, one can always
transform the metric to such a ultrastatic form.) The
second condition is that all metric components are z in-
dependent and the z components of the metric are space
independent. We demand this to make the rotation axis
simply be the z axis; otherwise, the spin operators or the
rotation generators would be z dependent.

Thanks to simplicity of the Riemann normal coordi-
nate the calculations are straightforward. Now, in our
setup, the temporal direction is not distorted, and thus
the propagator is a function of t � t

0 and we can de-
fine a conjugate energy to t � t

0 that is nothing but k0

in Eq. (4). By applying the rotation generator, we can
write a rotating propagator with ! as

S(x,x0
, k0) = e

!· 12⌃
@

@k0
S0(x,x

0
, k0) , (6)

for x0 ⇠ x (and x is the center of rotation, so that there
is no orbital term), where ⌃ is a spin operator defined by
⌃i = ✏

ijk

i

4 [�j , �k]. Now we recall our assumption of small
! and proceed to the expansion in terms of !. In the
0th order, we can replace S(x,x0

, k0) with S0(x,x0
, k0).

Then, using the symmetry properties of the Riemann ten-
sors, we can readily convince ourselves that jµ

A

��
⌦=0

= 0.
This is a reasonable result; even in curved space the axial
current is vanishing as long as there is no rotation.
In the 1st order the spin operator makes a di↵erence

leading to a non-zero Dirac trace. So, the whole quantity
is proportional to tr[�5�µ
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characteristic to anomaly calculations, and some alge-
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where, as noted in the beginning, we use the angular
velocity tensor that satisfies !i = ✏

ijk

!

jk

. The first term
in Eq. (5) immediately recovers the well-known formula
of the chiral vortical e↵ect. That is, defining the energy

dispersion "
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The above amounts to i�(2)⇣(2)
2⇡2 T

2 = i

12T
2 in the m ! 0

limit, from which we correctly reach Eq. (1).
The most interesting correction to the axial current

appears from the second term in Eq. (5). We use A1 =
R/12 [19] and the momentum integration for this term is
almost the same as the previous one apart from the mass
derivative. Then, we can show,
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We can take the m ! 0 limit and then the above integral
yields � i

8⇡2 . Therefore, together with the first term, the
total current turns out to be
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This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2

/12 � m

2
/8⇡2) to the first

order. Then, according to the chiral gap e↵ect [20], a

Next to leading-order contribution ~

2

Thus, all we need is the explicit form of the propagator
S(x, x0) in curved space at finite T including a rotation.

To construct such a propagator, it would be the most
intuitive to treat the e↵ects from rotation and geomet-
rical structure separately. We first employ the Riemann
normal coordinate ⇠ around a point x (that is identi-
fied as ⇠ = 0) and consider a fermion propagator with
infinitesimal separation, x

0 ⇠ x. By definition of the
Riemann normal coordinate, the Christo↵el symbols at
x are all vanishing and the Dirac matrices are ordinary
ones in flat spacetime, which significantly simplifies the
analyses. We can next introduce a finite ! as a small
perturbation. The propagator in the normal coordinate
that has no rotation simplifies in the limit of x0 ! x as

S0(x, x
0 ! x) =

Z
d

4
k

(2⇡)4
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+m)G(k) . (4)

Here k is a momentum conjugate to ⇠ and G(k) is a known
function involving metric derivatives [19] as
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where A1 represents mass-dimension 2 coe�cient in
terms of Riemann tensors at x, A1↵ mass-dimension 3,
and A1↵� , A2 mass-dimension 4 coe�cients, involving
spin operators. Only a part of them will be necessary
later. Higher-order terms represented by the ellipses are
suppressed for su�ciently high T as we will see later.

In what follows we restrict ourselves to a special situa-
tion with two conditions satisfied, which we demand for
technical simplicity. The first condition is that all met-
ric components are time independent and the temporal
components of the metric are space independent. We re-
quire this to utilize the standard Matsubara formalism
that is valid for equilibrated finite-T systems. One may
in principle relax this condition but then must cope with
a more complicated real-time formalism. We note that
the rotation induces space-dependent g00 at !

2 order,
but our current consideration is limited to the linear !

order. (Not relying on an assumption, one can always
transform the metric to such a ultrastatic form.) The
second condition is that all metric components are z in-
dependent and the z components of the metric are space
independent. We demand this to make the rotation axis
simply be the z axis; otherwise, the spin operators or the
rotation generators would be z dependent.

Thanks to simplicity of the Riemann normal coordi-
nate the calculations are straightforward. Now, in our
setup, the temporal direction is not distorted, and thus
the propagator is a function of t � t

0 and we can de-
fine a conjugate energy to t � t

0 that is nothing but k0

in Eq. (4). By applying the rotation generator, we can
write a rotating propagator with ! as

S(x,x0
, k0) = e

!· 12⌃
@

@k0
S0(x,x

0
, k0) , (6)

for x0 ⇠ x (and x is the center of rotation, so that there
is no orbital term), where ⌃ is a spin operator defined by
⌃i = ✏

ijk

i

4 [�j , �k]. Now we recall our assumption of small
! and proceed to the expansion in terms of !. In the
0th order, we can replace S(x,x0

, k0) with S0(x,x0
, k0).

Then, using the symmetry properties of the Riemann ten-
sors, we can readily convince ourselves that jµ

A

��
⌦=0

= 0.
This is a reasonable result; even in curved space the axial
current is vanishing as long as there is no rotation.
In the 1st order the spin operator makes a di↵erence

leading to a non-zero Dirac trace. So, the whole quantity
is proportional to tr[�5�µ
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characteristic to anomaly calculations, and some alge-
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where, as noted in the beginning, we use the angular
velocity tensor that satisfies !i = ✏

ijk

!

jk

. The first term
in Eq. (5) immediately recovers the well-known formula
of the chiral vortical e↵ect. That is, defining the energy

dispersion "
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The above amounts to i�(2)⇣(2)
2⇡2 T

2 = i

12T
2 in the m ! 0

limit, from which we correctly reach Eq. (1).
The most interesting correction to the axial current

appears from the second term in Eq. (5). We use A1 =
R/12 [19] and the momentum integration for this term is
almost the same as the previous one apart from the mass
derivative. Then, we can show,
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We can take the m ! 0 limit and then the above integral
yields � i

8⇡2 . Therefore, together with the first term, the
total current turns out to be
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This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2
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2
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order. Then, according to the chiral gap e↵ect [20], a

A1 =
R

12
⇥

� i

96⇡2
R(no IR singularity)
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Flachi-KF (appearing this week)

2

Thus, all we need is the explicit form of the propagator
S(x, x0) in curved space at finite T including a rotation.

To construct such a propagator, it would be the most
intuitive to treat the e↵ects from rotation and geomet-
rical structure separately. We first employ the Riemann
normal coordinate ⇠ around a point x (that is identi-
fied as ⇠ = 0) and consider a fermion propagator with
infinitesimal separation, x

0 ⇠ x. By definition of the
Riemann normal coordinate, the Christo↵el symbols at
x are all vanishing and the Dirac matrices are ordinary
ones in flat spacetime, which significantly simplifies the
analyses. We can next introduce a finite ! as a small
perturbation. The propagator in the normal coordinate
that has no rotation simplifies in the limit of x0 ! x as

S0(x, x
0 ! x) =

Z
d

4
k

(2⇡)4
(��

µ

k

µ

+m)G(k) . (4)

Here k is a momentum conjugate to ⇠ and G(k) is a known
function involving metric derivatives [19] as

G(k) =
"
1�

✓
A1 + iA1↵

@

@k

↵

�A1↵�
@

@k

↵

@k

�

◆
@

@m

2

+A2

✓
@

@m

2

◆2
#

1

k

2 �m

2
+ · · · , (5)

where A1 represents mass-dimension 2 coe�cient in
terms of Riemann tensors at x, A1↵ mass-dimension 3,
and A1↵� , A2 mass-dimension 4 coe�cients, involving
spin operators. Only a part of them will be necessary
later. Higher-order terms represented by the ellipses are
suppressed for su�ciently high T as we will see later.

In what follows we restrict ourselves to a special situa-
tion with two conditions satisfied, which we demand for
technical simplicity. The first condition is that all met-
ric components are time independent and the temporal
components of the metric are space independent. We re-
quire this to utilize the standard Matsubara formalism
that is valid for equilibrated finite-T systems. One may
in principle relax this condition but then must cope with
a more complicated real-time formalism. We note that
the rotation induces space-dependent g00 at !

2 order,
but our current consideration is limited to the linear !

order. (Not relying on an assumption, one can always
transform the metric to such a ultrastatic form.) The
second condition is that all metric components are z in-
dependent and the z components of the metric are space
independent. We demand this to make the rotation axis
simply be the z axis; otherwise, the spin operators or the
rotation generators would be z dependent.

Thanks to simplicity of the Riemann normal coordi-
nate the calculations are straightforward. Now, in our
setup, the temporal direction is not distorted, and thus
the propagator is a function of t � t

0 and we can de-
fine a conjugate energy to t � t

0 that is nothing but k0

in Eq. (4). By applying the rotation generator, we can
write a rotating propagator with ! as

S(x,x0
, k0) = e

!· 12⌃
@

@k0
S0(x,x

0
, k0) , (6)

for x0 ⇠ x (and x is the center of rotation, so that there
is no orbital term), where ⌃ is a spin operator defined by
⌃i = ✏

ijk

i

4 [�j , �k]. Now we recall our assumption of small
! and proceed to the expansion in terms of !. In the
0th order, we can replace S(x,x0

, k0) with S0(x,x0
, k0).

Then, using the symmetry properties of the Riemann ten-
sors, we can readily convince ourselves that jµ

A

��
⌦=0

= 0.
This is a reasonable result; even in curved space the axial
current is vanishing as long as there is no rotation.
In the 1st order the spin operator makes a di↵erence

leading to a non-zero Dirac trace. So, the whole quantity
is proportional to tr[�5�µ

�

µ

0
�

⌫

0
�

⌫ ] = 4i✏µµ
0
⌫

0
⌫ , which is

characteristic to anomaly calculations, and some alge-
braic procedures lead us to

j

µ

A

= i ✏

µµ

0
⌫

0
⌫

!

µ

0
⌫

0

Z
d

4
k

(2⇡)4
@

@k0
k

⌫

G(k) , (7)

where, as noted in the beginning, we use the angular
velocity tensor that satisfies !i = ✏

ijk

!

jk

. The first term
in Eq. (5) immediately recovers the well-known formula
of the chiral vortical e↵ect. That is, defining the energy

dispersion "

k

=
p

k

2 +m

2, we find;

Z
d

4
k

(2⇡)4
@

@k0

k0

k

2 �m

2
= �i

Z
d

3
k

(2⇡)3
n

0
F

("
k

)

=
i

⇡

2

Z 1

0
dk

✓
"

k

� m

2

2"
k

◆
n

F

("
k

) .

(8)

The above amounts to i�(2)⇣(2)
2⇡2 T

2 = i

12T
2 in the m ! 0

limit, from which we correctly reach Eq. (1).
The most interesting correction to the axial current

appears from the second term in Eq. (5). We use A1 =
R/12 [19] and the momentum integration for this term is
almost the same as the previous one apart from the mass
derivative. Then, we can show,

@

@m

2
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k

(2⇡)4
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k0
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2
= � i
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3
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�1
k
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00
F
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k

) .

(9)
We can take the m ! 0 limit and then the above integral
yields � i

8⇡2 . Therefore, together with the first term, the
total current turns out to be

j

z

A

=

✓
T

2

12
� R

96⇡2

◆
! . (10)

This result reminds us of the formula of the chiral gap
e↵ect [20]; in fact, we can explicitly confirm the consis-
tency. From Eq. (8) we can infer the finite-m correc-
tion to find; iT

2
/12 ! i(T 2

/12 � m

2
/8⇡2) to the first

order. Then, according to the chiral gap e↵ect [20], a

jzA = !

✓
T 2

12
� m2

8⇡2
� R

96⇡2
+ · · ·

◆

first correction by finite mass
related through  
“Chiral Gap Effect”
m2 ! m2 +

R

12
Flachi-Fukushima PRL(2014)

Finite-T CVE and CS current 
connected by the mass term!
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For the gravitational CS current,  
no reason why its expectation value should be zero

CS current on Kerr geometry (Boyer-Lindquist coordinates)
Up to the linear order in w

3

finite scalar curvature shifts the fermionic mass gap as
m

2 ! m

2 + R/12, which perfectly explains the second
term in Eq. (10).

We can continue the expansion to higher-order correc-
tions. The next term including A1↵ does not produce any
non-zero contribution, and finite corrections arise from
the next A1↵� term. This term involves one more mass
derivative, and we need to evaluate,

@

@m

2

Z
d

3
k

(2⇡)3


n

00
F

("
k

)

"

k

+
n

000
F

("
k

)

3

�
! � 7⇣(3)

16⇡4
T

2
, (11)

in the m ! 0 limit. Amazingly the above combina-
tion of the integrals is infrared finite, though each has
singularity. This adds a correction to the current by
�j

µ

A

= 3Ā100 · 7⇣(3)/16⇡4
T

2, where Ā1↵� represents a
part of A1↵� without spin operator. In the present treat-
ment with only static deformations, Ā100 is zero, how-
ever. Thus, the first non-zero correction appears from
the second derivative in terms of m2, that is,

�j

z

A

= Ā2 ·
7⇣(3)

32⇡4
T

2
(12)

with Ā2 being a mass-dimension 4 coe�cient given by
Ā2 = 1

120R;µ
µ + 1

288R
2 � 1

180Rµ⌫

R

µ⌫ + 1
180Rµ⌫�⌧

R

µ⌫�⌧ .

Relation to the Gravitational Chiral Anomaly: It
would need some more explanations how the correc-
tion / R in Eq. (10), that does not depend on T , re-
sults from the finite-T calculations. If we keep a fi-
nite m and take the T = 0 limit first, then we would
have

R
d

3
k

(2⇡)3 "
�1
k

n

00
F

("
k

) ! 0, and no such term survives.
Therefore, the order of two limits, T ! 0 and m ! 0 is
important. Here, we always consider them = 0 limit first
and then change T , for the value of m defines the the-
ory, and the control parameter we can adjust externally
is T in physical situations. We will later see that the
Chern-Simons current has a similar singularity at T = 0.

The above-mentioned calculations would be reminis-
cent of the high-T expansion, but we emphasize that
there is a crucial di↵erence. If one performs the high-
T expansion for the pressure p for example, the leading
term is proportional to T

4, the next leading term m

2
T

2,
and the further next term m

4. The important point is
that such m

4 term in the high-T expansion is accompa-
nied by a logarithmic singularity, ln(m/⇡T ), which blows
up for bothm ! 0 and T ! 0. Unlike this, in the present
case, such terms involving ln(m/⇡T ) exactly cancel out.
The quickest interpretation for this cancellation may be
presumably the fact that the anomaly is unrenormalized.

Now, let us turn to the gravitational Chern-Simons
current (2). The Chern-Simons current is not gauge
invariant, but it can be augmented to be physical.
Under the coordinate transformation from x

µ in the
normal coordinates (where the Christo↵el symbols are
zero) to x

0µ with rotation, �k

ij

have a correction by

(@x0k
/@x

r)(@2
x

r)(@x0i
@x

0j), that gives,

��x

0y = ���y

0x = ! . (13)

Then, up to the linear order in !, the Chern-Simons cur-
rent takes the following form;

j

µ

CS =
!

48⇡2

�
R

0
x0x +R

0
y0y �R

x

yxy

�R

y

xyx

�
. (14)

The important observation here is that, once ! depen-
dence is extracted as above, the rest part is written in
terms of the Riemann tensors only. For our problem with
flat 0 and z directions, only R

x

yxy

and R

y

xyx

are con-
cerned, and the above expression explains our previous
calculation, jz

A

= �!R/(96⇡2), in curved space.
We would emphasize that such a relation between

the microscopically computed current and the Chern-
Simons current should be understood in the same way
as the CME current. In the CME case, the axial current
along the z axis is proportional to ✏

z0ij
A0@iAj

, which is
gauge variant. However, once the chemical potential µ
is turned on, A0 is replaced with µ, and then the rest
part is the field strength tensor and thus gauge invari-
ant; hjz

A

i / µB. Thus, the Chern-Simons current can
be given an interpretation as a physical current due to
external environment [21]. Our explicit calculations sup-
port an idea that the argument for the derivation of the
CME based on the Chern-Simons current holds also for
the CVE involving the metric background with a corre-
spondence of (µ in the CME) $ (! in the CVE).

Chern-Simons Current with the Kerr Metric: Once
the interpretation of the Chern-Simons current is estab-
lished, it provides us with a powerful ingredient to com-
pute the topologically induced current. Let us adopt the
Kerr metric as an example. The Kerr metric describes
the gravitational background with rotation. It would be
a tough calculation to evaluate the propagator on top of
the Kerr metric, but it is rather straightforward to write
the Chern-Simons current down. In a standard choice
of the Boyer-Lindquist coordinates (t, r, � = cos ✓, �),
after some calculations, j

r

CS 6= 0 and j

�

CS 6= 0, while
j

0
CS = j

�

CS = 0. Here, instead of showing the full ex-
pressions, let us discuss j

r

CS and j

�

CS in particular limits
only. For a small !, the current in the linear ! order
reads,

j

r

CS =
3⇡3(�3⇡ + 8rT

B

)�

256r6T 4
B

! , j

�

CS =
3⇡3(�1 + 3�2)

64r6T 3
B

! .

(15)
where T

B

is not a thermal temperature but a parame-
ter determined by the mass. Another interesting limit
is T

B

= 0; unlike the Schwarzschild metric, we can take
the extremal limit for the Kerr metric. One may think
that such a limit of T

B

! 0 would be singular from the
expression (15), but before the expansion in !, the limit
smoothly exists. It should be noted that Eq. (15) is the

� = cos ✓

may be an origin for “astrophysical jet” 
in the universe (~ particle production)

⇥1/96⇡2

(Wikipedia)
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For the gravitational CS current,  
no reason why its expectation value should be zero

CS current on Kerr geometry (Boyer-Lindquist coordinates)
Another interesting limit ~ Extremal limit (zero temperature)

4

FIG. 1. Axial currents in the extremal limit. Light color
represents positively large values and dark color represents
negatively large values.

leading order in the expansion in !/T

B

, and we cannot
extrapolate Eq. (15) naively to T

B

! 0. We obtain the
results in the extremal limit, using a notation ⇠ = r!;

j

r

CS = �32(1� 2⇠)[�4 + 4�2
⇠(3� 8⇠)� 48⇠3(1� ⇠)]�

(�2 + 4⇠2)5
!

3
,

(16)

j

�

CS =
32[�6 � �

4(3 + 56⇠2) + 72�2
⇠

2(1 + 2⇠2)� 48⇠4]

(�2 + 4⇠2)5
!

4
.

(17)

It is notable that these currents in the extremal limit be-
come divergingly large for � ! 0 if ! (and ⇠) is small
enough. This feature is very di↵erent from Eq. (15)

and the ! expanded currents go as j

r

CS ⇠ � ! 0 and
j

�

CS ⇠ �

0 ! const. The currents in Eqs. (16) and (17)
are plotted in Fig. 1, where we use the unit in terms of
! and we set y = 0 without loss of generality due to the
axial symmetry. As seen in the figure the currents are
strongly peaked near z ⇠ 0 (or ✓ ⇠ ⇡/2).

It would be an intriguing problem to discuss physics
implications from these currents for compact stellar ob-
jects in the universe and hot and dense quark matter
in the heavy-ion collisions, which we will report in our
follow-up publication. In the same way as to interpret
the chiral anomaly as parity-odd particle production, we
can give a physical picture for these currents as extra
contributions to phenomena similar to the Hawking ra-
diation (see Ref. [2] for discussions along these lines).

Summary: In this work we calculated the axial cur-
rent expectation value directly in curved space at finite
temperature. The chiral vortical e↵ect receives a cor-
rection proportional to the scalar curvature, R, which is
consistent with the finite mass correction and the chiral
gap e↵ect. We point out that such a topologically in-
duced current ⇠ !R with ! being the angular velocity
can be explained by the Chern-Simons current. Our ar-
gument is parallel to the derivation of the chiral magnetic
e↵ect that is fully explained by the replacement of A0 by
the chemical potential µ in the Chern-Simons current.
This physical augmentation of the Chern-Simons current
by external environment also opens an interesting theo-
retical device for the particle production problem under
non-trivial geometry.

We thank Karl Landsteiner, Pablo Morales, and Shi
Pu for discussions. This work was partially supported by
JSPS KAKENHI Grant No. 15H03652 and 15K13479.
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⇠ = r!

Small w and small TB are NOT commutable limits
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Distribution of currents on rotating gravitational background
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Big enhancement at c = 0 (z = 0) → jet + disk!
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Summary

CS current is a physical current if non-zero seen 
with physical states 
Standard CVE formula and the gravitational CS 

current connected through the finite mass 
correction and the chiral gap effect 
CS current provides us with a non-perturbative 

device to obtain a physical current for general 
geometrical backgrounds 

Effects of rotation deserve further investigations!
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